3.6.40 \(\int \frac {\tan ^2(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx\) [540]

Optimal. Leaf size=125 \[ \frac {i \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{(a-i b)^{3/2} d}-\frac {i \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{(a+i b)^{3/2} d}-\frac {2 a^2}{b \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}} \]

[Out]

I*arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/(a-I*b)^(3/2)/d-I*arctanh((a+b*tan(d*x+c))^(1/2)/(a+I*b)^(1/2)
)/(a+I*b)^(3/2)/d-2*a^2/b/(a^2+b^2)/d/(a+b*tan(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3623, 3620, 3618, 65, 214} \begin {gather*} -\frac {2 a^2}{b d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {i \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d (a-i b)^{3/2}}-\frac {i \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d (a+i b)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^2/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

(I*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/((a - I*b)^(3/2)*d) - (I*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/
Sqrt[a + I*b]])/((a + I*b)^(3/2)*d) - (2*a^2)/(b*(a^2 + b^2)*d*Sqrt[a + b*Tan[c + d*x]])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3618

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c*(
d/f), Subst[Int[(a + (b/d)*x)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3620

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3623

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[
(b*c - a*d)^2*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 + b^2))), x] + Dist[1/(a^2 + b^2), Int[(a + b*Ta
n[e + f*x])^(m + 1)*Simp[a*c^2 + 2*b*c*d - a*d^2 - (b*c^2 - 2*a*c*d - b*d^2)*Tan[e + f*x], x], x], x] /; FreeQ
[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && NeQ[a^2 + b^2, 0]

Rubi steps

\begin {align*} \int \frac {\tan ^2(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx &=-\frac {2 a^2}{b \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}+\frac {\int \frac {-a+b \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{a^2+b^2}\\ &=-\frac {2 a^2}{b \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}-\frac {\int \frac {1+i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{2 (a-i b)}-\frac {\int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{2 (a+i b)}\\ &=-\frac {2 a^2}{b \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}-\frac {\text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 (i a-b) d}+\frac {\text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 (i a+b) d}\\ &=-\frac {2 a^2}{b \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}+\frac {\text {Subst}\left (\int \frac {1}{-1-\frac {i a}{b}+\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{(a-i b) b d}+\frac {\text {Subst}\left (\int \frac {1}{-1+\frac {i a}{b}-\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{(a+i b) b d}\\ &=\frac {i \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{(a-i b)^{3/2} d}-\frac {i \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{(a+i b)^{3/2} d}-\frac {2 a^2}{b \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 0.16, size = 119, normalized size = 0.95 \begin {gather*} \frac {b (-i a+b) \, _2F_1\left (-\frac {1}{2},1;\frac {1}{2};\frac {a+b \tan (c+d x)}{a-i b}\right )-(a-i b) \left (2 a+2 i b-i b \, _2F_1\left (-\frac {1}{2},1;\frac {1}{2};\frac {a+b \tan (c+d x)}{a+i b}\right )\right )}{b \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^2/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

(b*((-I)*a + b)*Hypergeometric2F1[-1/2, 1, 1/2, (a + b*Tan[c + d*x])/(a - I*b)] - (a - I*b)*(2*a + (2*I)*b - I
*b*Hypergeometric2F1[-1/2, 1, 1/2, (a + b*Tan[c + d*x])/(a + I*b)]))/(b*(a^2 + b^2)*d*Sqrt[a + b*Tan[c + d*x]]
)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(817\) vs. \(2(105)=210\).
time = 0.12, size = 818, normalized size = 6.54

method result size
derivativedivides \(\frac {-\frac {2 b^{2} \left (\frac {\frac {\left (\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a^{3}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a \,b^{2}-\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{4}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, b^{4}\right ) \ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right )}{2}+\frac {2 \left (4 a^{3} b^{2}+4 a \,b^{4}-\frac {\left (\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a^{3}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a \,b^{2}-\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{4}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, b^{4}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{2}\right ) \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}}{4 b^{2} \left (a^{2}+b^{2}\right )^{\frac {3}{2}}}+\frac {-\frac {\left (\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a^{3}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a \,b^{2}-\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{4}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, b^{4}\right ) \ln \left (-b \tan \left (d x +c \right )-a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-\sqrt {a^{2}+b^{2}}\right )}{2}+\frac {2 \left (-4 a^{3} b^{2}-4 a \,b^{4}+\frac {\left (\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a^{3}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a \,b^{2}-\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{4}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, b^{4}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{2}\right ) \arctan \left (\frac {-2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}}{4 b^{2} \left (a^{2}+b^{2}\right )^{\frac {3}{2}}}\right )}{a^{2}+b^{2}}-\frac {2 a^{2}}{\left (a^{2}+b^{2}\right ) \sqrt {a +b \tan \left (d x +c \right )}}}{b d}\) \(818\)
default \(\frac {-\frac {2 b^{2} \left (\frac {\frac {\left (\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a^{3}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a \,b^{2}-\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{4}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, b^{4}\right ) \ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right )}{2}+\frac {2 \left (4 a^{3} b^{2}+4 a \,b^{4}-\frac {\left (\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a^{3}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a \,b^{2}-\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{4}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, b^{4}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{2}\right ) \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}}{4 b^{2} \left (a^{2}+b^{2}\right )^{\frac {3}{2}}}+\frac {-\frac {\left (\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a^{3}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a \,b^{2}-\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{4}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, b^{4}\right ) \ln \left (-b \tan \left (d x +c \right )-a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-\sqrt {a^{2}+b^{2}}\right )}{2}+\frac {2 \left (-4 a^{3} b^{2}-4 a \,b^{4}+\frac {\left (\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a^{3}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}\, a \,b^{2}-\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a^{4}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, b^{4}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{2}\right ) \arctan \left (\frac {-2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}}{4 b^{2} \left (a^{2}+b^{2}\right )^{\frac {3}{2}}}\right )}{a^{2}+b^{2}}-\frac {2 a^{2}}{\left (a^{2}+b^{2}\right ) \sqrt {a +b \tan \left (d x +c \right )}}}{b d}\) \(818\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^2/(a+b*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/d/b*(-b^2/(a^2+b^2)*(1/4/b^2/(a^2+b^2)^(3/2)*(1/2*((2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)*a^3+(2*(a^2
+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)*a*b^2-(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^4+(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*b
^4)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))+2*(4*a^3*b^2+4*a*b
^4-1/2*((2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)*a^3+(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)*a*b^2-
(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^4+(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*b^4)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^
2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1
/2)))+1/4/b^2/(a^2+b^2)^(3/2)*(-1/2*((2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)*a^3+(2*(a^2+b^2)^(1/2)+2*a)
^(1/2)*(a^2+b^2)^(1/2)*a*b^2-(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^4+(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*b^4)*ln(-b*tan(d*
x+c)-a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-(a^2+b^2)^(1/2))+2*(-4*a^3*b^2-4*a*b^4+1/2*((2*(a^
2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)*a^3+(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)*a*b^2-(2*(a^2+b^2)^(
1/2)+2*a)^(1/2)*a^4+(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*b^4)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^
(1/2)*arctan((-2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))))-a^2/(a
^2+b^2)/(a+b*tan(d*x+c))^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2/(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(tan(d*x + c)^2/(b*tan(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 5654 vs. \(2 (99) = 198\).
time = 1.37, size = 5654, normalized size = 45.23 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2/(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/4*(4*sqrt(2)*((a^10*b + 3*a^8*b^3 + 2*a^6*b^5 - 2*a^4*b^7 - 3*a^2*b^9 - b^11)*d^5*cos(d*x + c)^2 + 2*(a^9*b
^2 + 4*a^7*b^4 + 6*a^5*b^6 + 4*a^3*b^8 + a*b^10)*d^5*cos(d*x + c)*sin(d*x + c) + (a^8*b^3 + 4*a^6*b^5 + 6*a^4*
b^7 + 4*a^2*b^9 + b^11)*d^5)*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3*a*b^8)
*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt((9*a^4*b^2 - 6*a^2
*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4))*(1/((a^6 + 3
*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(3/4)*arctan(((3*a^12 + 14*a^10*b^2 + 25*a^8*b^4 + 20*a^6*b^6 + 5*a^4*b^8 -
2*a^2*b^10 - b^12)*d^4*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a
^4*b^8 + 6*a^2*b^10 + b^12)*d^4))*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)) + (3*a^9 + 8*a^7*b^2 + 6*a
^5*b^4 - a*b^8)*d^2*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*
b^8 + 6*a^2*b^10 + b^12)*d^4)) + sqrt(2)*(2*(a^13 + 6*a^11*b^2 + 15*a^9*b^4 + 20*a^7*b^6 + 15*a^5*b^8 + 6*a^3*
b^10 + a*b^12)*d^7*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b
^8 + 6*a^2*b^10 + b^12)*d^4))*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)) + (a^10 + 5*a^8*b^2 + 10*a^6*b
^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)*d^5*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 +
20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)))*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^9 - 6*a^5*b^4
 - 8*a^3*b^6 - 3*a*b^8)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*
sqrt(((9*a^8*b^2 + 12*a^6*b^4 - 2*a^4*b^6 - 4*a^2*b^8 + b^10)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*
d^4))*cos(d*x + c) + sqrt(2)*((9*a^8*b^3 + 12*a^6*b^5 - 2*a^4*b^7 - 4*a^2*b^9 + b^11)*d^3*sqrt(1/((a^6 + 3*a^4
*b^2 + 3*a^2*b^4 + b^6)*d^4))*cos(d*x + c) + 2*(9*a^5*b^3 - 6*a^3*b^5 + a*b^7)*d*cos(d*x + c))*sqrt((a^6 + 3*a
^4*b^2 + 3*a^2*b^4 + b^6 + (a^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3*a*b^8)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 +
b^6)*d^4)))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*(1/((a^6 + 3*a
^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(1/4) + (9*a^5*b^2 - 6*a^3*b^4 + a*b^6)*cos(d*x + c) + (9*a^4*b^3 - 6*a^2*b^5
+ b^7)*sin(d*x + c))/cos(d*x + c))*(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(3/4) + sqrt(2)*(2*(3*a^15*b
+ 17*a^13*b^3 + 39*a^11*b^5 + 45*a^9*b^7 + 25*a^7*b^9 + 3*a^5*b^11 - 3*a^3*b^13 - a*b^15)*d^7*sqrt((9*a^4*b^2
- 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4))*sqrt(
1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)) + (3*a^12*b + 14*a^10*b^3 + 25*a^8*b^5 + 20*a^6*b^7 + 5*a^4*b^9 -
 2*a^2*b^11 - b^13)*d^5*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*
a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)))*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3
*a*b^8)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt((a*cos(d*x
+ c) + b*sin(d*x + c))/cos(d*x + c))*(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(3/4))/(9*a^4*b^2 - 6*a^2*b
^4 + b^6)) + 4*sqrt(2)*((a^10*b + 3*a^8*b^3 + 2*a^6*b^5 - 2*a^4*b^7 - 3*a^2*b^9 - b^11)*d^5*cos(d*x + c)^2 + 2
*(a^9*b^2 + 4*a^7*b^4 + 6*a^5*b^6 + 4*a^3*b^8 + a*b^10)*d^5*cos(d*x + c)*sin(d*x + c) + (a^8*b^3 + 4*a^6*b^5 +
 6*a^4*b^7 + 4*a^2*b^9 + b^11)*d^5)*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3
*a*b^8)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt((9*a^4*b^2
- 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4))*(1/((
a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4))^(3/4)*arctan(-((3*a^12 + 14*a^10*b^2 + 25*a^8*b^4 + 20*a^6*b^6 + 5*a^
4*b^8 - 2*a^2*b^10 - b^12)*d^4*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^
6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4))*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)) + (3*a^9 + 8*a^7*b
^2 + 6*a^5*b^4 - a*b^8)*d^2*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 +
 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) - sqrt(2)*(2*(a^13 + 6*a^11*b^2 + 15*a^9*b^4 + 20*a^7*b^6 + 15*a^5*b^8
+ 6*a^3*b^10 + a*b^12)*d^7*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 +
15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4))*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)) + (a^10 + 5*a^8*b^2 +
10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)*d^5*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^
8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)))*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 + (a^9 - 6
*a^5*b^4 - 8*a^3*b^6 - 3*a*b^8)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^4)))/(9*a^4*b^2 - 6*a^2*b^4
+ b^6))*sqrt(((9*a^8*b^2 + 12*a^6*b^4 - 2*a^4*b^6 - 4*a^2*b^8 + b^10)*d^2*sqrt(1/((a^6 + 3*a^4*b^2 + 3*a^2*b^4
 + b^6)*d^4))*cos(d*x + c) - sqrt(2)*((9*a^8*b^...

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\tan ^{2}{\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**2/(a+b*tan(d*x+c))**(3/2),x)

[Out]

Integral(tan(c + d*x)**2/(a + b*tan(c + d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^2/(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [B]
time = 5.63, size = 2239, normalized size = 17.91 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^2/(a + b*tan(c + d*x))^(3/2),x)

[Out]

(log(((((-1/(a^3*d^2 + b^3*d^2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i))^(1/2)*(64*a*b^11*d^4 - ((-1/(a^3*d^2 + b^3*d^
2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a
^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5))/2 + 256*a^3*b^9*d^4 + 384*a^5*b^7*d^4 + 256
*a^7*b^5*d^4 + 64*a^9*b^3*d^4))/2 + (a + b*tan(c + d*x))^(1/2)*(16*b^10*d^3 + 32*a^2*b^8*d^3 - 32*a^6*b^4*d^3
- 16*a^8*b^2*d^3))*(-1/(a^3*d^2 + b^3*d^2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i))^(1/2))/2 - 8*b^9*d^2 - 24*a^2*b^7*
d^2 - 24*a^4*b^5*d^2 - 8*a^6*b^3*d^2)*(-1/(a^3*d^2 + b^3*d^2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i))^(1/2))/2 - log(
((-1/(4*(a^3*d^2 + b^3*d^2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i)))^(1/2)*(64*a*b^11*d^4 + (-1/(4*(a^3*d^2 + b^3*d^2
*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a
^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5) + 256*a^3*b^9*d^4 + 384*a^5*b^7*d^4 + 256*a^
7*b^5*d^4 + 64*a^9*b^3*d^4) - (a + b*tan(c + d*x))^(1/2)*(16*b^10*d^3 + 32*a^2*b^8*d^3 - 32*a^6*b^4*d^3 - 16*a
^8*b^2*d^3))*(-1/(4*(a^3*d^2 + b^3*d^2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i)))^(1/2) - 8*b^9*d^2 - 24*a^2*b^7*d^2 -
 24*a^4*b^5*d^2 - 8*a^6*b^3*d^2)*(-1/(4*(a^3*d^2 + b^3*d^2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i)))^(1/2) - atan((((
-1i/(4*(a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*(64*a*b^11*d^4 + (-1i/(4*(a^3*d^2*1i + b^3*
d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a
^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5) + 256*a^3*b^9*d^4 + 384*a^5*b^7*d^4 + 256*a^
7*b^5*d^4 + 64*a^9*b^3*d^4) - (a + b*tan(c + d*x))^(1/2)*(16*b^10*d^3 + 32*a^2*b^8*d^3 - 32*a^6*b^4*d^3 - 16*a
^8*b^2*d^3))*(-1i/(4*(a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*1i - ((-1i/(4*(a^3*d^2*1i + b
^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*(64*a*b^11*d^4 - (-1i/(4*(a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3
*a^2*b*d^2)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a^5*b^8*d^5 + 640*a^7*b
^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5) + 256*a^3*b^9*d^4 + 384*a^5*b^7*d^4 + 256*a^7*b^5*d^4 + 64*a^9*b^3
*d^4) + (a + b*tan(c + d*x))^(1/2)*(16*b^10*d^3 + 32*a^2*b^8*d^3 - 32*a^6*b^4*d^3 - 16*a^8*b^2*d^3))*(-1i/(4*(
a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*1i)/(16*b^9*d^2 - ((-1i/(4*(a^3*d^2*1i + b^3*d^2 -
a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*(64*a*b^11*d^4 - (-1i/(4*(a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^
2)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a^5*b^8*d^5 + 640*a^7*b^6*d^5 +
320*a^9*b^4*d^5 + 64*a^11*b^2*d^5) + 256*a^3*b^9*d^4 + 384*a^5*b^7*d^4 + 256*a^7*b^5*d^4 + 64*a^9*b^3*d^4) + (
a + b*tan(c + d*x))^(1/2)*(16*b^10*d^3 + 32*a^2*b^8*d^3 - 32*a^6*b^4*d^3 - 16*a^8*b^2*d^3))*(-1i/(4*(a^3*d^2*1
i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2) - ((-1i/(4*(a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^
2)))^(1/2)*(64*a*b^11*d^4 + (-1i/(4*(a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*(a + b*tan(c +
 d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11
*b^2*d^5) + 256*a^3*b^9*d^4 + 384*a^5*b^7*d^4 + 256*a^7*b^5*d^4 + 64*a^9*b^3*d^4) - (a + b*tan(c + d*x))^(1/2)
*(16*b^10*d^3 + 32*a^2*b^8*d^3 - 32*a^6*b^4*d^3 - 16*a^8*b^2*d^3))*(-1i/(4*(a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3
i - 3*a^2*b*d^2)))^(1/2) + 48*a^2*b^7*d^2 + 48*a^4*b^5*d^2 + 16*a^6*b^3*d^2))*(-1i/(4*(a^3*d^2*1i + b^3*d^2 -
a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*2i - (2*a^2)/(b*d*(a^2 + b^2)*(a + b*tan(c + d*x))^(1/2))

________________________________________________________________________________________